

Creating map projects in QGIS
Setting parameters of map projects for further publication in eLiteGIS

2

Table of contents
1. Introduction ... 5

1.1. CoGIS platform components .. 5

1.2. Additional information ... 5

2. Settings of connection to database ... 7

2.1. Supported DBMS .. 7

2.2. Connection to database ... 7

2.3. Database manager ... 8

2.3.1. Creating table ... 8

2.3.2. General types of fields in the table .. 9

2.3.3. General types of geometry fields ... 9

2.3.4. Importing data from file or layer .. 9

2.3.5. Adding table to map of the project .. 10

3. QGS project’s properties .. 12

3.1. General properties ... 12

3.2. Coordinate system ... 12

3.3. Default styles ... 12

3.4. Relations .. 13

3.5. Variables .. 14

4. Layers and tables ... 15

4.1. Feature layers .. 15

4.2. Raster layers ... 15

4.3. Group layer .. 15

4.4. Multiscale layer .. 15

4.5. Tables ... 16

5. Layer’s properties .. 17

5.1. Data source .. 17

5.1.1. Layer’s name .. 17

5.1.2. Coordinate system ... 17

5.1.3. Definition query ... 17

5.2. Layer’s style .. 17

5.2.1. Selecting layer’s symbol ... 17

5.2.2. Scale dependency .. 18

5.2.3. Composite marker ... 18

3

5.2.4. Types of symbols: marker .. 19

5.2.5. Types of symbols: polyline ... 20

5.2.6. Types of symbols: fill .. 21

5.2.7. Redefining data (Data defined override).. 24

5.2.8. List of functions supported in SQL expressions (Expression Dialog в QGIS) 24

5.2.9. General symbology settings ... 25

5.2.10. Layer rendering .. 30

5.3. Labels ... 31

5.3.1. Methods of specifying labels ... 31

5.3.2. Settings .. 31

5.4. Properties of layer fields (Attributes Form) ... 34

5.5. Joins ... 37

5.6. Displaying value by feature’s identification ... 37

5.7. Layer visibility settings ... 37

5.8. Variables .. 38

6. Variables settings ... 39

6.1. Tracking edits (Edit Tracker)... 39

6.2. Time properties (Time Extent) ... 39

6.3. Clusterization ... 40

6.3.1. Cluster symbol ... 40

6.3.2. Cluster label ... 42

6.3.3. Rendering the source features (Renderer Settings)... 43

6.3.4. Distance ... 43

6.3.5. Visibility within scale .. 43

6.3.6. Clusterization type ... 44

6.3.7. Edge symbology ... 44

6.3.8. Pie charts for cluster .. 44

6.4. Subtypes... 48

6.5. Semi scale dependency .. 51

6.6. Many-to-many relationship ... 51

6.7. Annotations .. 54

6.8. SQL query based view .. 54

6.9. Interpolation maps ... 55

6.10. Heat maps .. 57

4

6.11. Pseudo 3D .. 60

6.12. Number of layers ... 61

6.13. Cropping map using mask layer ... 62

6.14. Power line symbol .. 62

7. Creating geocoding service .. 64

7.1. Preparing data in database .. 64

7.2. Preparing the project in QGIS .. 66

7.3. Publishing the geocoding service in eLiteGIS ... 69

8. Attachments... 72

8.1. Storing attachments in the database ... 72

8.2. Storing attachments as files on the disk .. 72

9. Edits history ... 74

10. Tiles auto update .. 75

1. Introduction

1.1. CoGIS platform components

CoGIS platform consists of the following software components:

• CoGIS Designer – a constructor for creation of interactive maps and fully functional web

map applications based on map services, geoprocessing and analyses tools;

• CoGIS SOE (SOE, an abbreviation for Server Object Extension) – a module providing support

for advanced methods to work with the map services layers and objects;

• CoGIS Portal – a geoportal consisting of catalog of published interactive maps and map

apps, tools for searching and navigation, and web pages with reference information which

structure and content are set in accordance with the users’ needs;

• CoGIS Mobile – mobile applications for work with interactive maps and map apps on iOS

and Android devices and mobile service for operation of these applications;

• eLiteGIS – a GIS server for publishing data and tools as web services.

eLiteGIS components

• Sever components provided for publishing of services and arranging web access to these

services via REST API;

• Web console eLiteGIS Server Manager with graphic interface for publishing GIS services

and setting GIS server.

eLiteGIS allows you to publish various types of services, including map services: dynamic and tile,

open only for viewing or also for editing; with vector and raster layers.

One source of data for publishing map services can be a map project in QGIS format, created by

means of desktop GIS software QGIS.

The given manual provides instructions on setting selected parameters of QGIS projects, allowing

you to get advantage of using the extended functionality on working with geodata by publishing

this data as services in eLiteGIS.

The complete list of available manuals is provided in section Ошибка! Источник ссылки не

найден..

This manual contains instructions on creating and setting of interactive maps and web map

applications in CoGIS Designer, and also setting of Maps catalog in CoGIS Portal.

Complete list of instructions on work with platform components is provided in section 1.2 below.

1.2. Additional information

The following manuals with information about CoGIS platform can be also helpful:

• Publishing GIS services in eLiteGIS;

• Installing and setting eLiteGIS;

• Installing and setting CoGIS;

• Creating map projects in QGIS;

6

• Creating map applications in CoGIS;

• Working in mobile applications CoGIS Mobile.

7

2. Settings of connection to database

2.1. Supported DBMS

eLiteGIS supports the work with map projects, the data sources of which can be MSSQL or

PostgreSQL/PostGIS databases.

2.2. Connection to database

To connect to database in QGIS, select DBMS as shown on Figure 1.

Figure 1 – Connection to database

Now enter the connection parameters (Host, Port, Login, Password etc.), see Figure 2.

8

Figure 2 – Entering connection parameters

2.3. Database manager

Working with the connected database in QGIS is recommended via Database manager, see

Figure 3.

Figure 3 – Database manager in QGIS

2.3.1. Creating table

To create the table in the database, select the appropriate menu option in Database manager,

see Figure 4.

Figure 4 – Creation of new table in database

9

2.3.2. General types of fields in the table

The list of general types of fields in the table is shown on Figure 5.

Figure 5 – General types of fields in the table

The checked Null box means that the empty value is allowed.

The Serial type is the integer type (int) with the autoincrement.

2.3.3. General types of geometry fields

The tables in the database support point, polyline and polygon types of geometry. To create the

required field type, select the appropriate option as shown on Figure 6.

Figure 6 – Creating geometry field

2.3.4. Importing data from file or layer

To the database table it is possible to import data from the existing layer in QGIS project or from

the file with data, see Figure 7.

10

Figure 7 – Importing data from layer or file to table

2.3.5. Adding table to map of the project

The table with spatial data can be added to the project map as shown on Figure 8.

Figure 8 – Adding table to the project map

Now you need to select coordinate system for the added layer, see Figure 9.

11

Figure 9 – Selecting coordinate system for the added layer

12

3. QGS project’s properties

3.1. General properties

One of the important properties of the QGS project is the path to the project’s file. It is required

to specify or to change this path, see Figure 10.

Figure 10 – General project’s properties

Now you need to set the saved paths to the data sources as shown on Figure 11.

Figure 11 – Paths to data sources

3.2. Coordinate system

For the QGIS project you need to set the coordinate system, see Figure 12.

Figure 12 – Setting coordinate system for the project

Nо projection option is not supported. The coordinate system needs to be always set for the

project.

3.3. Default styles

For the project you need to set the default styles (Default Styles -> Managing styles), see Figure

13.

13

Figure 13 – Default styles for the project

3.4. Relations

At the QGIS project level it is possible to set relations between layers and tables, that will be

supported by publishing services in eLiteGIS, and then by building the map in CoGIS. At that no

additional settings at the eLiteGIS or CoGIS levels will be required.

The relations between layers or tables should be set based on the values from the common

attribute field, see Figure 14 and Figure 15.

Figure 14 – Relations between project’s layers/tables

14

Figure 15 – Adding the new relation

3.5. Variables

At the QGIS project level it is possible to set variables that will be used by publishing services in

eLiteGIS, for example, scale dependence of the symbology (Scale Dependent), reference scale

(Reference Scale), edits tracking (Edit Tracker) and more (see section 6 for details).

The example of completed values for the project’s variables is shown on Figure 16.

Figure 16 – Setting variables at QGIS project level

15

4. Layers and tables

4.1. Feature layers

The feature layers are used for visualization of similar geographic/geometry vector features. The

available geometry types of feature layers are point, polyline and polygon, see Figure 17.

Figure 17 – Feature layers of different types

4.2. Raster layers

The raster layers are layers containing raster data only. For now, the raster layers created in

QGIS project are not supported in eLiteGIS. But it is possible to publish the raster layers based on

the GeoTIFF file directly via the eLiteGIS interface (web console eLiteGIS Server Manager, see

Publishing GIS services in eLiteGIS for details).

4.3. Group layer

The group layer or complex layer is the layer containing sublayers of one or multiple types, see

Figure 18.

Figure 18 – Group layer

4.4. Multiscale layer

The multiscale layer is provided for visualization of the features representations in multiple

scales. That is, with the multiscale layer the variable detailing of features depending on the map

scale is set.

The example of setting the multiscale layer is shown on Figure 19.

16

Figure 19 – Multiscale layer

The multiscale layers can be of point, polyline or polygon type.

4.5. Tables

The table in the QGIS table of contents is the table data added to the project from the database.

The table does not contain spatial data, but only the attribute data. The table needs to be added

to the project (Table of contents window) for publishing the appropriate table data in eLiteGIS,

see Figure 20

Figure 20 – The table in the list of layers of map project

17

5. Layer’s properties

5.1. Data source

5.1.1. Layer’s name

In the QGS project in the layer’s properties it is possible to specify or edit the layer’s name:

Layer’s data source – Parameters - Layer’s name, see Figure 21.

Figure 21 – Setting properties of the layer’s data source

5.1.2. Coordinate system

In the QGS project in the layer’s properties it is possible to specify or edit the coordinate system

for specific layer: Layer’s data source - Geometry and Coordinate Reference System - Set source

coordinate reference system, see Figure 21.

5.1.3. Definition query

In the QGS project in the layer’s properties it is possible to set the SQL definition query for

specific layer: Layer’s data source- Provider Feature Filter, see Figure 21.

5.2. Layer’s style

In the QGS project in the layer’s properties it is possible to specify the symbology to display

layer’s features on the map that will be supported in the eLiteGIS services without additional

settings.

5.2.1. Selecting layer’s symbol

For the layer it is possible to select the symbol, set its color, size and other parameters, see

Figure 22. The figure shows which display parameters are supported by publishing the project as

the map service in eLiteGIS.

18

Figure 22 – Setting symbol for layer

5.2.2. Scale dependency

The size of symbols as scale dependent units is specified by selection of measurement units

Meters as scale. For the size it is specified the quantity of meters in the reality for scale 1:1000

(reference scale in eLiteGIS).

5.2.3. Composite marker

For the layer, the possibility of building the symbol from multiple symbols, setting separate

properties for each symbol is supported, see Figure 23.

Figure 23 – Composite marker for layer

19

5.2.4. Types of symbols: marker

The figure below shows the types of symbols supported by publishing of map project as service

in eLiteGIS, see Figure 24.

Figure 24 – Types of symbols supported by publishing of map project as service in eLiteGIS

5.2.4.1. Simple marker

The figure below shows the types of simple markers (simple shaped markers with customizable

sizes and graphic properties) that are supported by publishing of map project as service in

eLiteGIS, see Figure 25.

Figure 25 – Types of simple markers supported by publishing of map project as service in
eLiteGIS

5.2.4.2. Symbol marker

By publishing of map project as service in eLiteGIS, the use of symbol markers (markers created

from symbols of the main fonts from the system folder) is supported, see Figure 26.

Figure 26 – Symbol marker

20

5.2.4.3. Fill marker

By publishing of map project as service in eLiteGIS, the use of fill of simple marker based on the

areal features rules is supported. All types of fill are supported, see section 5.2.6 for details.

5.2.4.4. Marker – raster image

By publishing of map project as service in eLiteGIS, the use of marker symbol created from the

graphic file of PNG (*.png), JPEG (*.jpg,*.jpeg), GIF (*.gif), Windows bitmap (.bmp) or Windows

enhanced metafile (.emf) is supported, see Figure 27.

Figure 27 – Marker - raster image

Note: Raster image marker saves the relative or absolute path to file depending on setting

described in section 3.1 (it is recommended to save the relative path). The file should be copied to

the server.

5.2.4.5. SVG marker

By publishing of map project as service in eLiteGIS, the use of SVG marker created based on

graphic file in SVG (*.svg) format is supported, see Figure 28.

Figure 28 – SVG marker

5.2.5. Types of symbols: polyline

The figure below shows the line symbology types that are supported when publishing the map

project as a service in eLiteGIS, see Figure 29.

21

Figure 29 – Types of symbols for polylines supported by publishing of map project as service in
eLiteGIS

5.2.5.1. Simple polyline

The figure below shows parameters for simple polyline supported by publishing of map project

as service in eLiteGIS, see Figure 30.

Figure 30 – Simple polyline

5.2.5.2. Marker polyline

The figure below shows parameters for marker polyline supported by publishing of map project

as service in eLiteGIS, see Figure 31.

Figure 31 – Marker polyline

5.2.6. Types of symbols: fill

The figure below shows types of fill supported by publishing of map project as service in

eLiteGIS, see Figure 32.

22

Figure 32 – Types of fill supported by publishing of map project as service in eLiteGIS

5.2.6.1. Simple fill

The figure below shows parameters for simple fill supported by publishing of map project as

service in eLiteGIS, see Figure 33.

Figure 33 – Simple fill

5.2.6.2. Marker fill

By publishing of map project as service in eLiteGIS, the marker fill is supported, see Figure 34.

23

Figure 34 – Marker fill

5.2.6.3. SVG template fill

By publishing of map project as service in eLiteGIS, the SVG template fill is supported, see Figure

35.

Figure 35 – SVG template fill

5.2.6.4. Gradient fill

By publishing of map project as service in eLiteGIS, the gradient fill is supported, see Figure 36.

24

Figure 36 – Gradient fill

5.2.6.5. Outline: marker polyline

The settings of this outline are similar to settings of the marker polyline, see section 5.2.5.

5.2.6.6. Outline: simple polyline

The settings of this outline are similar to settings of simple polyline, see section 5.2.5.

5.2.7. Redefining data (Data defined override)

eLiteGIS supports symbology and labeling parameters specified at the QGIS project level based

on values of selected fields or SQL expressions.

The ability of data redefinition is supported for such parameters as size, rotation angle, see

Figure 37.

Figure 37 – Setting size and rotation angle

5.2.8. List of functions supported in SQL expressions (Expression Dialog в QGIS)

eLiteGIS supports SQL expressions specified at the QGIS project level using the following

functions: "sin", "cos", "tan", "atan", "abs", "asin", "acos", "log", "log10", "cailing", "floor",

"round", "ltrim", "rtrim", "substr", "substring", "concat", "lower", "upper", "pow", "andbits", "len",

"length","coalesce", "mod", "scale_linear", "scale_exp", "tostring", see Figure 38.

25

Figure 38 – SQL expressions specified at the QGIS project level

5.2.9. General symbology settings

The below figure shows general settings of symbology supported by publishing of map project as

service in eLiteGIS, see Figure 39.

Figure 39 – General settings of symbology supported by publishing of map project as service in
eLiteGIS

5.2.9.1. Symbology setting: no symbols

The symbols for features of this layer will not be displayed.

5.2.9.2. Symbology setting: common symbol

All features of the layers will be displayed with the common symbol.

5.2.9.3. Symbology setting: unique values

The symbols will be displayed based on the unique value of the selected field of the feature, see

Figure 40.

Figure 40 – Symbology setting: unique values

At that, if you turn off visibility of one of the values in QGIS project, see Figure 41, then in the

published service in eLiteGIS and CoGIS this value will not be displayed in the legend and on the

map. But the label will be displayed if it has been specified. Besides, you will be able to identify

26

feature on the map. And, if style for category all other values has been set, the features from the

category of turned off style will get to this category.

Figure 41 – Turning off visibility of one of the values at the project level

Note: We do not recommend turning off specific style in the project. If you do not need the style,

just do not specify it.

When the style for all other values is specified, all features that have not been described

separately would get to this category. For this style it will be impossible to turn off visibility in the

legend.

With the Combined categories setting it is possible to combine multiple categories to one, see

Figure 42.

Figure 42 – Combined categories for unique values

5.2.9.4. Symbol setting: graduated symbol

The graduated symbol is set for displaying the quantitative differences between mapped

featured via changing the symbols color or size. The data is classified by ranges, with specific

color or size for each range, Figure 43.

The graduated symbol is supported with the limitation: for such type of visualization at the level

of the web map in CoGIS it will not be possible to set calculation of features by each symbology.

27

Figure 43 – Graduated symbol

5.2.9.5. Symbol setting: rules

eLiteGIS supports symbols set for the layer in the QGIS project via the SQL filter, see Figure 44.

Figure 44 – SQL filters for layer display

SQL filter is supported with the limitation: for such type of visualization at the level of the web

map in CoGIS it will not be possible to set calculation of features by each symbology. The visibility

within the scale is also not supported in the rules editor, see Figure 45.

Figure 45 – Visibility within the scale

5.2.9.6. Symbol setting: clusterization

eLiteGIS supports the options of features grouping and display of group in the group centroid

specified at the level of QGIS project, see Figure 46.

28

Figure 46 – Clusterization

Learn more about setting clusterization and additional properties in section 6 below.

5.2.9.7. Symbol setting: creation of heat maps

The heat maps are used for visualizing clusters of point data and identifying high concentrations

of activity, see Figure 47.

Figure 47 – Example of heat map

eLiteGIS supports layer symbology as heat maps and interpolation maps set at the level of QGIS

project, see Figure 48.

Figure 48 – Setting layer symbology as heat map

For additional setting of interpolation maps display in eLiteGIS, you can set properties in the

variables settings, see section 6.9 for more details.

5.2.9.8. Symbol levels

The symbol levels are used for setting the order of the symbology rendering: Unique values,

Graduated symbol, Rules, see Figure 49.

29

Figure 49 – Symbol levels (1)

The order of rendering can be set not only for unique values, but for all layers of the symbology,

thus, different symbol layers are mixed in various unique values, see Figure 50.

Figure 50 – Symbol levels (2)

30

5.2.10. Layer rendering

eLiteGIS supports some parameters of layer rendering set at the level of map project in QGIS,

see Figure 51.

Figure 51 – Parameters of layer rendering

Opacity – this property is set for all layers of symbology (parts of combined symbol).

Order of features rendering – this property allows you to set sorting of the layer features by

specific field or expression, see Figure 52.

Figure 52 – Order of sorting layer features

The sorting of features is possible for number value, text, date. Also variables $area for polygon

layer and $length for polyline layer are supported, in order to sort the rendering of the layer

features by area/length, respectively, see Figure 53.

Figure 53 – Example of sorting features by area

31

5.3. Labels

5.3.1. Methods of specifying labels

eLiteGIS supports the following methods of specifying labels set at the level of map project in

QGIS:

• No labels;

• Single label – labeling by values from selected field, see Figure 54;

Figure 54 – Single label

• Labels based on rules – label visibility is specified based on SQL filter and label text –

based on SQL expression, see Figure 55.

Figure 55 – Labels based on rules

5.3.2. Settings

eLiteGIS supports the following labels settings specified at the level of map project in QGIS:

• Text, see Figure 56;

32

Figure 56 – Settings for label text

• Buffer, see Figure 57;

Figure 57 – Settings for label buffer

• Shadow, see Figure 58;

33

Figure 58 – Settings for label shadow

• Location for point feature – only Cartographic option is supported by default, see Figure

59.

Figure 59 – Settings for location of point feature labels

• Location for linear feature – only Curved and Horizontal options are supported. Parallel is

shown as Curved, see Figure 60;

Figure 60 – Settings for location of linear feature labels

34

• Location for areal feature – only location in the feature centroid is supported by default,

see Figure 61;

Figure 61 – Settings for location of areal feature labels

• Rendering – only visibility within scale is supported, see Figure 62;

Figure 62 – Settings for label rendering

• Rotation – supported for annotations only, see section 6.7 and Figure 63.

Figure 63 – Settings for rotation

Formatting and history settings are not supported.

5.4. Properties of layer fields (Attributes Form)

eLiteGIS supports different properties of the layer fields specified at the level of map project, see

Figure 64.

35

Figure 64 – Setting properties of layer fields

For example, the following properties can be specified:

• General – setting the alias.

• Field type (Widget Type) – general settings of field type.

Note: the field type is set by default based on the field type in the database.

o Domains, see Figure 65.

Figure 65 – Setting domain for the field

o Related value – domain values based on values from another layer, see Figure

66.

Figure 66 – Setting related values for the field

36

o UUID generator - generation of Universally unique identifier by feature’s

creation, see Figure 67. The required field type is uuid or varchar.

Figure 67 – Setting UUID generator

• Default values (Default expression) – values that will be recorded to the appropriate fields

by creation of the feature, see Figure 68.

Figure 68 – Setting default values for the field

Types of values:

o String. Field type – string, record of specified string, see Figure 69.

Figure 69 – Default value for the string

o Integer. Field type – integer, record of specified integer, see Figure 70.

Figure 70 – Default value for the integer

o Real number. Field type – real, record of specified real number, see Figure 71.

Figure 71 – Default value for the real number

o @user_account_name – record of the current user name in eLiteGIS

{CurrentUser}. If the user is not authorized, null will be recorded. Field type -

string, see Figure 72.

Figure 72 – Current user name used as the default value

o uuid() – record of the Universally unique identifier. Field type is uuid or string,

see Figure 73.

37

Figure 73 – Using the generated UUID as the default value

o now() – record of the current date-time UTC, {CurrentDateTime}. Field type -

timestamptz, see Figure 74.

Figure 74 – Using the current date-time as the default value

o to_date(now()) – record of the current date in local time zone, {CurrentDate}. Field

type – date, see Figure 75.

Figure 75 – Using the current date and time in local time zone as the default value

5.5. Joins

Joins (Join Field) specified at the level of map project in QGIS are not supported at eLiteGIS level

by publishing project as map service.

5.6. Displaying value by feature’s identification

eLiteGIS supports value specified at QGIS project level, which value is used for display of the

feature’s identification result, for example, on the map in CoGIS, see Figure 76.

Figure 76 – Field values by feature’s identification

SQL expressions are partly supported, see section 7.2 for details.

5.7. Layer visibility settings

eLiteGIS supports settings of layer visibility in the specific scale range or in all scales, set in the

map project, see Figure 77.

Figure 77 – Visibility settings via layer parameters

Setting/clearing the layer visibility scale ranges can be done in the context menu of the layer, see

Figure 78.

38

Figure 78 – Setting the layer visibility via context menu

5.8. Variables

At the level of single layer in QGIS project it is possible to set variables that will be used by

publishing services in eLiteGIS, for example: clusterization settings (Clustering), scale

dependency of symbology (Scale Dependent), tracking edits (Edit Tracker) and more (see section

6), see Figure 79.

Figure 79 – Setting variables for the layer

39

6. Variables settings
In QGIS it is possible to set variables both at the level of the entire project and for the separate

layers.

These variables can be further used by publishing services in eLiteGIS. These variables provide

the extended options for data visualization (heat maps, clusterization, pie charts etc.) and for

data management (relationships between features of different layers, tracking edits, reference

books of values etc.).

No additional settings at the eLiteGIS or CoGIS levels are required.

6.1. Tracking edits (Edit Tracker)

The settings group Edit Tracker includes settings for automatic completion of fields with values,

see Table 1.

Table 1 – Edit Tracker settings group

Variable Description Properties for

eLiteGIS_edit_tracker_create_date_field
Field name for completing the date of the

project’s creation

Entire project

and layer

eLiteGIS_edit_tracker_create_user_field
Field name for completing the name of the

user who created the feature

Entire project

and layer

eLiteGIS_edit_tracker_last_edited_date_field
Field name for completing the date of the

feature’s editing

Entire project

and layer

eLiteGIS_edit_tracker_last_edited_user_field
Field name for completing the name of the

user who edited the feature

Entire project

and layer

Below are examples of settings specified for the entire project (Figure 80) and for the layer

(Figure 81).

Figure 80 – Setting Edit Tracker variables for the project

Figure 81 – Setting Edit Tracker variables for the layer

6.2. Time properties (Time Extent)

The settings group Time Extent includes settings for time properties for visualization of data

using Time Slider, see Table 2.

40

Table 2 –Time Extent settings group

Variable Description Properties for

eLiteGIS_time_from_date_field Field name with starting value of the time range
Entire project and

layer

eLiteGIS_time_to_date_field Field name with ending value of the time range
Entire project and

layer

eLiteGIS_time_interval Value of the time range Entire project

eLiteGIS_time_interval_unit Units of the value of the time range Entire project

eLiteGIS_time_min_date Value of the minimum date of the time range Entire project

eLiteGIS_time_max_date Value of the maximum date of the time range Entire project

eLiteGIS_time_time_data_cumulative No value. Includes cumulative effect. Layer

Below are examples of settings specified for the entire project and for the layer, see Figure 82.

Figure 82 – Setting Time Extent variables for the project and for the layer

Variable includes the

cumulative effect when not the time range or specific date is selected, but the right limit of the

time range that is known to include all the history to the selected date.

6.3. Clusterization

At the map project level it is possible to set clusterization of features (grouping features and

displaying groups in the group’s centroid) that will be supported by publishing project in eLiteGIS

and by adding this service to the map in CoGIS.

6.3.1. Cluster symbol

The cluster coloring is set according to the rules of the symbology settings. The cluster marker

can be simple, symbol, raster, SVG and combined, see Figure 83.

Figure 83 – Selecting marker for cluster

The cluster symbol size is set via the Data defined override expression, see Figure 84.

Figure 84 – Setting the cluster symbol size (1)

41

To do so, in the context menu of Data defined override expression select Assistant, see Figure

85.

Figure 85 – Setting the cluster symbol size (2)

In the Symbol size window, the size of the symbol is specified.

The source of values for the size calculation is the @cluster_size variable that contains the

number of features appeared in the cluster.

The fields Values from and To show the number of features that can appear to the cluster, see

Figure 86.

Figure 86 – Setting the cluster symbol size (3)

That is, the Assistant tool allows you to create the formula for calculation of the cluster symbol

size as following:

coalesce(scale_linear(@cluster_size, 1, 4000, 4, 16), 0)

The size calculation formula can be edited or set without the Assistant tool, to do so, select Edit

in the Data defined override expression menu, see Figure 87.

42

Figure 87 – Setting the cluster symbol size (4)

6.3.2. Cluster label

The label of number of features appeared in the cluster is set in the cluster symbol coloring

marker, Symbol marker layer, see Figure 88

Note: for the Point cluster symbology, the Symbol marker is provided by default.

Figure 88 – Setting the label of number of features appeared in the cluster

The size of symbol marker is set by default same as the size of the entire symbol for cluster,

using the same formula, but with the added coefficient:

0.5*(coalesce(scale_linear(@cluster_size, 1, 4000, 4, 16), 0))

43

For additional setting of the label, the following parameters are used, see Table 3.

Table 3 – Parameters for additional setting of label

Variable Description Value

eLiteGIS_clustering_needToScaleLabels Scaling labels true/false

eLiteGIS_clustering_showSmallLabel
Rounding the number of features in the cluster (not

more than 4 characters)
true/false

6.3.3. Rendering the source features (Renderer Settings)

The source features can be rendered using the following symbology types: No symbols, Simple

symbol, Unique values, Graduated symbol, Rules.

In the Renderer Settings the coloring for each type of symbology is set, same as for simple not

cluster features (see section 5.2.9), see Figure 89.

Figure 89 – Rendering the source features of the cluster

6.3.4. Distance

This group of settings is provided for setting the coverage radius for features grouping.

Supported measurement units are millimeters.

6.3.5. Visibility within scale

The visibility within scale set in QGIS settings affects the cluster visibility. The following additional

parameters are used for setting visibility of the source features, see Table 4.

Table 4 – Parameters for setting visibility of the source features of the cluster

Variable Description

eLiteGIS_feature_minScale Minimum scale value

eLiteGIS_feature_maxScale Maximum scale value

44

6.3.6. Clusterization type

eLiteGIS supports a few algorithms to cluster features. For selection of the required algorithm,

the additional parameter is used: eLiteGIS_clustering_clusterizerType

This parameter can have the following values: HexagonedSimple (by default),

HexagonedDelaunay, Simple, Delaunay.

6.3.7. Edge symbology

For setting of the edge symbology, the additional layer (temporary layer in QGIS) is used, see

Figure 90.

Figure 90 – New temporary layer for cluster edges

The required geometry type of the temporary layer is LineString, see Figure 91.

Figure 91 – Geometry type of the temporary layer with cluster edges

The created temporary layer should be placed just under the main cluster layer, see Figure 92.

Figure 92 – Location of the layer with cluster edges in the project’s layers tree

In the layer properties in Variables tab specify parameter eLiteGIS_clustering_layer_type

with value edge:

Specify the edge style (coloring). You can set the visibility within the scale. If visibility is not set,

this property will be taken from the main cluster layer.

6.3.8. Pie charts for cluster

With the help of additional layers and parameters, you can set the display of the features cluster

as the pie chart that dynamically changes depending on the types of features included in the

cluster. Example of such display is shown on Figure 93.

45

Figure 93 – Clusters of city advertising structures on Novosibirsk map: each cluster is
represented as the pie chart on the distribution of structure types in the cluster

For setting of the pie charts the additional permanent layers are used.

For creation of such a setting layer you can duplicate the main cluster layer, see Figure 94.

Figure 94 – Duplicating the main cluster layer for creation of the pie chart

With this method of creation, the required data source and the cluster size formula are

immediately saved in the setting layer. It is also possible to add such a layer again, recreating all

the settings manually. It is necessary to place the setting layer under the main cluster layer. In

the case where there is the layer for edges, the location should be as follows, see Figure 95.

Figure 95 – Location of the setting layer for pie charts relative to the main cluster layer and
edges layer

In the properties of the setting layer in the Variables tab specify

eLiteGIS_clustering_layer_type with value pie: .

46

Note: Thus, it is indicated that this layer will be perceived by eLiteGIS as the setting layer and so

will not be published in the service.

The order of drawing symbols in the cluster (there can be many levels) is shown in the figure

below, see Figure 96.

Figure 96 – The order of drawing symbols in the cluster

6.3.8.1. Coloring segments (pies) in the pie chart

For setting the colors of the chart pies, make sure that in the layer properties in Style section the

Point cluster symbology type is specified.

Then, in Cluster symbol set the chart symbol and size.

For symbol, the value Simple marker should be selected (the symbol marker should be deleted in

case if it remained by duplicating the source layer).

The size is set by the same formula as in the source layer, with the addition of the coefficient

greater by one, so that the pie chart is larger than the central symbol, see Figure 97.

47

Figure 97 – Setting symbol for the pie chart

Thus, the following formula for calculation of the cluster symbol size is created:

1.3*(coalesce(scale_linear(@cluster_size, 1, 4000, 4, 16), 0))

For coloring of the chart pies the rendering type Unique values is used. Each value is given its

own symbol, from which the color of the segment is taken for this value in a pie, see Figure 98.

Figure 98 – Setting pie chart colors based on the unique values

For defining values for each segment it is also possible to use SQL expression. For example, this

allows you to combine categories, see Figure 99.

48

Figure 99 – Setting pie chart colors using SQL expression

The visibility within the scale for each segment is taken from the main layer by default. But it can

also be set separately for each level of the pie chart.

6.3.8.2. Pie chart for single cluster

The symbology for displaying pie chart for the single cluster (the feature that did not appear in

any cluster) is set via eLiteGIS_clustering_singleFeatureDrawMode parameter.

This parameter can have the following values:

• Simple – the symbol from the coloring of the source features without highlight is used;

• Cluster – the symbol is used as in the cluster with the caption "1" and highlighting from

the pie chart;

• Simplechart – the symbol from the coloring of the source features is used with the

highlight from the pie chart.

6.4. Subtypes

Subtypes – this is the data classification method where subgroups of features with the same

attributes of a features class are used.

Subtypes allow you to:

• Set default values for the selected attribute, which will be automatically assigned to a

new feature depending on the subtype to which it belongs;

• Group features of the same type by any attribute without the need to create separate

feature classes, which improves the database performance;

• Apply reference books (domains) of coded values to features for each subtype;

• Create rules governing relationships between feature classes at the subtypes level.

eLiteGIS and CoGIS support subtypes set at the level of the map project in QGIS.

49

The settings for work with subtypes are specified via variables for the layer, see Table 5.

Table 5 – Variables for setting subtypes in the layer

Variable Description By default

eLiteGIS_subtypes_field Name of field for subtypes -

eLiteGIS_subtypes_table

Name of table in database with description

of domains and default values (table of

subtypes)

-

eLiteGIS_subtypes_table_default_value_field
Name of field in the table of subtypes with

the default value for subtype
DefaultValue

eLiteGIS_subtypes_table_domain_table_field

Name of field in the table of subtypes with

the name of the table containing domain

values

DomainTable

eLiteGIS_subtypes_table_for_field_field

Name of field in the table of subtypes with

the name of the field in the main table with

features of the feature class where the

domain values of subtypes should be shown

ForField

eLiteGIS_subtypes_table_subtype_value_field
Name of field in the table of subtypes where

the value of the parent type is stored
SubtypeValue

Variables that have the default value are optional, provided that the fields in the subtype table

are named appropriately.

The example of filled variables for the table is shown in the Figure 100.

Figure 100 – Example of parameters set for the subtypes in the layer

The example of table structure in the database and how they should be filled is shown on Figure

101.

50

Figure 101 – Example of the structure and filling of tables in the database with subtypes

The example of the map with features, for one of the attributes of which subtypes are set, is

shown on Figure 102. The figure demonstrates the dialog of the feature creation in which

possible values for the SybType attribute are automatically substituted depending on the

selected feature type (Type).

Figure 102 – Creating the new feature, taking into account the grouping of features by subtypes

51

6.5. Semi scale dependency

Semi scale dependency is the ability to set maximum and minimum scales and two sizes for a

symbol, beyond which the symbol size does not change, but between which it changes linearly

depending on the reduction/increase factors.

eLiteGIS supports settings of dependency of symbols on the scale, specified at the level of the

map project in QGIS.

These settings are specified via variables for the layer, see Table 6.

Table 6 – Variables for setting the semi scale dependency of the layer symbols

Variable Description Properties for

eLiteGIS_sizeExpression_maxScale Maximum scale value Layer

eLiteGIS_sizeExpression_maxSymbolSize Increase factor value Layer

eLiteGIS_sizeExpression_minScale Minimum scale value Layer

eLiteGIS_sizeExpression_minSymbolSize Reduction factor value Layer

The example of filled values for variables is shown on Figure 103.

Figure 103 – Example of set variables for the layer display

6.6. Many-to-many relationship

Many-to-many relationship is the ability to set the relationship table for use of the many-to-

many relationship at the level of the layers and/or the tables of the map project.

To enable support of this ability at the level of eLiteGIS and CoGIS, it is required to add the

relationship table to the QGIS project, as shown on Figure 104.

Figure 104 – Example of relationship table for setting the many-to-many relationship at the
project’s level

Next you need to set variables for this table, as shown in Table 7.

Table 7 – Variables for setting the many-to-many relationship table

Variable Description

eLiteGIS_relation_table Pointing to the table to use in relationship (empty value)

eLiteGIS_relation_table_published Whether to publish the relationship table (true/false)

The example of filled values for the relationship table is shown on Figure 105.

52

Figure 105 – Example of filled values for the relationship table

To finish settings, specify the relationship in the project properties for each related layer, see

section 3.4 for details. The example of filled data about relationships in the project properties is

shown on Figure 106.

Figure 106 – Example of filled data about relationships in the project’s properties

The figures below show the example of map containing the layer with features and the table

with data about owners of these features, related by the many-to-many relationship, see Figure

107-Figure 109.

Figure 107 – Example of a feature related with many customers

53

Figure 108 – Example of a customer related with many features

Figure 109 – Creation of the new feature with the option to relate it with one or multiple
customers

As by adding the relationship table to the map project, for the variable

eLiteGIS_relation_table_published the value true has been specified, then the relationship

table can be also viewed in the published map application, see Figure 110.

54

Figure 110 – Relationship table in the published map application

6.7. Annotations

Enabling annotation support for a layer allows you to label polyline features as static labels. All

properties for annotations are taken from the properties of the regular label, see section 5.3.

To enable annotation support at the level of eLiteGIS, you need to specify the appropriate value

for the layer variable, see Table 8.

Table 8 – Variable for support for layer annotations

Variable Description

eLiteGIS_annotations
Points that the feature should be labeled with the

annotation (true/false)

The example of filled variable value for the layer is shown on Figure 112.

Figure 111 – Example of filled variable value for annotation support

6.8. SQL query based view

The SQL query based view is the ability to create layers in a project based on a SQL query to

tables in a database. The property is set for the temporary layer.

To enable this option at the eLiteGIS level, it is necessary to specify the corresponding value for

the variable for the temporary layer in the map project, see Table 9.

Table 9 – Variable for creation of the SQL query based view

Variable Description

eLiteGIS_query SQL query to table in database

55

The example of filled variable value for the temporary layer is shown on Figure 112.

Figure 112 – Example of filled value for creation of the SQL query based view

6.9. Interpolation maps

Interpolation maps are provided to visualize clusters of point data and/or identify high

concentrations of activity.

At the level of the selected layer in QGIS project it is possible to set variables that will allow you

to display the layer data as the interpolation map by publishing the project in eLiteGIS, see

Figure 113. At that, no additional service setting at the level of eLiteGIS is required.

Figure 113 – Variables for displaying the layer data as interpolation map

The variable eLiteGIS_heatmap_normalization_algorithm is provided for setting of

normalization of the values calculation and can have the following values, see Table 10.

Table 10 – Possible values for variable eLiteGIS_heatmap_normalization_algorithm

Value Description

Linear (by default) The calculated value is normalized linearly (uniformly)

Logarithm
The calculated value is normalized by the logarithm, the average

values are close to the maximum

The variable eLiteGIS_heatmap_kernel_function is provided for setting rendering parameters

(kernel function) and can have the following values, see Ошибка! Источник ссылки не найден..

Table 11 – Possible values for variable eLiteGIS_heatmap_kernel_function

Value Description

Uniform (by default) Uniform distribution

Triangular Triangular distribution

Epanechnikov Epanechnikov (parabolic) distribution

Quartic Quartic distribution

Triweight Triweight distribution

Tricube Tricube distribution

Cosine Cosine distribution

The graphs of the mentioned kernel functions are shown on Figure 114.

56

Figure 114 – Graphs of kernel functions for use by rendering of interpolation map

The variable eLiteGIS_heatmap_kernel_size_expression is provided for setting parameter of

kernel radius calculation by SQL expression (instead of standard parameter Radius in QGIS). The

variable takes the value as SQL expression for calculation of the radius value.

The variable eLiteGIS_heatmap_model is provided for setting parameters for rendering of

interpolation map via the interpolation algorithm. The possible values of this variable are shown

in Ошибка! Источник ссылки не найден..

Table 12 – Possible values for variable eLiteGIS_heatmap_model

Value Description

Accumulation
Interpolation mode is off, it is equivalent to the absence of this

property

Interpolation Interpolation mode is on

If interpolation is used, the variables for kernel function and kernel size

(eLiteGIS_heatmap_normalization_algorithm and

eLiteGIS_heatmap_kernel_size_expression) are not considered.

Additionally, the interpolation map can be set by specifying value for normalization window, see

Table 13.

Table 13 – Variables for normalization window

Variable Description

eLiteGIS_heatmap_min_value Minimum value of normalization window

eLiteGIS_heatmap_max_value Maximum value of normalization window

These parameters are optional. If they are not specified, the minimum value is taken as null, and

the maximum value is taken from the Maximum value parameter in QGIS.

The example of filled variables values for the normalization window and the interpolation

algorithm is shown on Figure 115.

57

Figure 115 – Example of filled variables values for the normalization window and the
interpolation algorithm

The example of interpolation map published using eLiteGIS and CoGIS based on the map project

described above, is shown on Figure 116.

Figure 116 – Interpolation map showing distribution of trees in London districts

6.10. Heat maps

Heat maps are "temperature" maps of the territory, showing a continuous distribution of the

values of a feature (air temperature, atmospheric pressure, altitude, etc.), for the construction of

which various interpolation algorithms are used.

Figure 117 and Figure 118 show heat maps on air temperature and precipitation in the territory

of Russian Federation.

58

Figure 117 – Heat map on air temperature for specific period in the territory of Russian
Federation

Figure 118 – Heat map on precipitation for specific period in the territory of Russian Federation

The heat maps were created based on weather station readings (see Figure 119) and

interpolation of obtained values to the entire territory.

59

Figure 119 – Source data from weather station based on which the heat maps were created

At the level of the selected layer in QGS project it is possible to set variables that will allow you

to display the layer data as heat map by publishing the project in eLiteGIS:

• eLiteGIS_heatmap_model – enables interpolation mode for the layer;

• eLiteGIS_heatmap_min_value – minimum value of normalization window;

• eLiteGIS_heatmap_max_value – maximum value of normalization window.

At that, no additional setting of service at eLiteGIS level is required.

The variable eLiteGIS_heatmap_model is provided for setting parameters for rendering of heat

map via the interpolation algorithm. The possible values of this variable are shown in Table 14.

Table 14 – Possible values for variable eLiteGIS_heatmap_model

Value Description

Accumulation
Interpolation mode is off, it is equivalent to the absence of this

property

Interpolation Interpolation mode is on

Additionally, the heat map can be set by specifying value for normalization window, see Table

15.

Table 15 – Variables for normalization window

Переменная Description

eLiteGIS_heatmap_min_value Minimum value of normalization window

eLiteGIS_heatmap_max_value Maximum value of normalization window

These parameters are optional. If they are not specified, the minimum value is taken as null, and

the maximum value is taken from the Maximum value parameter in QGIS.

60

The example of filled variables values for the normalization window and the interpolation

algorithm is shown on Figure 120.

Figure 120 – Example of filled variables values for the normalization window and the
interpolation algorithm

Examples of heat maps published using eLiteGIS and CoGIS based on the above mentioned map

project are shown on Figure 117 and Figure 118.

6.11. Pseudo 3D

Pseudo 3D is used to display pseudo 3D shapes based on areal features with a given height in

meters. The most common use of this feature is to display the height of buildings based on their

number of stores.

At the level of the selected layer in the QGS project, you can set variables that will allow you to

display layer objects as pseudo 3D features when publishing a project in eLiteGIS, see Figure 113.

At that, no additional setting of service at eLiteGIS level is required.

Table 16 – Variables for display of features as pseudo 3D shapes

Variable Description

eLiteGIS_pseudo3d_heightExpression
Feature’s height in meters,

sql expression is allowed

eLiteGIS_pseudo3d_faceOpacityExpression

Opacity of side faces in percent

(0-100), calculated from the feature’s

opacity value specified in the symbol

coloring

eLiteGIS_pseudo3d_minScale
Minimum visibility scale of pseudo 3D for the

feature (optional)

eLiteGIS_pseudo3d_maxScale
Maximum visibility scale of pseudo 3D for

the feature (optional)

The example of filled values for variables is shown on Figure 121.

Figure 121 – Example of filled values for variables

The example of pseudo 3D visualization based on a service published with eLiteGIS and CoGIS

and configured at the map project level as described above is shown on Figure 122.

61

Figure 122 – Example of pseudo 3D visualization

6.12. Number of layers

In the layer properties in QGIS it is possible to set the identifier (id) for the selected layer. This ID

will be assigned to the layer when publishing in eLiteGIS instead of the automatically assigned ID.

This property can be useful when debugging of QGS project, based on which the map service is

published and maps are created in CoGIS, as the order, quantity and IDs of layers, respectively,

can change, but at that used in the settings of map in CoGIS.

The layer identifier is set via variable eLiteGIS_layer_id.

At that the order of layers remains the same as in QGIS project.

Setting two similar numbers is not allowed.

The example of filled value for variable is shown on Figure 123.

Figure 123 – Example of filled value for variable which specifies the ID of the selected layer

The number for Group layer is set in the layer name as follows: number=layer name

For example: 1002=My group layer.

The example of group layer with specified number in QGS project is shown on Figure 124.

Figure 124 – Example of group layer with specified number

62

6.13. Cropping map using mask layer

At the level of the QGS project you can configure cropping of all layers of the map service with a

special layer called a mask (MaskLayer). The mask layer can be of any type (point, polyline,

polygon) and of any color.

The mask layer can be any layer of the map project. The following layer variables are used for

setting the mask layer, see Table 16.

Table 17 – Variables for setting mask layer

Variable Description Values

eLiteGIS_masklayer
Indicates whether the layer is the mask

layer

true/false

eLiteGIS_masklayer_channel

Indicates which channel should be

used as the mask (in most cases, the A

opacity is used)

A (opacity)

R (red)

G (green)

B (blue)

eLiteGIS_masklayer_group

Cropping by group layer. If the current

layer is in the group layer, then all

layers from this group will be used with

this cropping property.

true/false

eLiteGIS_masklayer_invert
Indicates whether the mask inversion

should be used
true/false

eLiteGIS_masklayer_keep_in_map
Indicates whether to display

MaskLayer in the map service
true/false

The example of filled values for variables is shown on Figure 125.

Figure 125 – Example of filled values for setting the mask layer

6.14. Power line symbol

In topographic maps, to display power lines, the corresponding symbol is used: a linear feature,

at each vertex of which a symbol of a power line pole (point/square/rectangle) and indented

arrows in the directions of the line are displayed, see Figure 126.

63

Figure 126 – Example of displaying power line on the topographic map

For setting such symbol in QGIS you need to create a combined linear symbol as shown on

Figure 127.

Figure 127 – Setting combined symbol for power line

In the layer parameters specify the variable eLiteGIS_markers_snap_to_line as true, see

Figure 128.

Figure 128 – Example of filled variable value, that allows you to display complex combined
symbols (such as power line) on the map

Scale dependency is possible only if the marker itself is scale dependent. But at the same time,

its size will also change.

64

7. Creating geocoding service
GIS server eLiteGIS allows you to create geocoding service by map service.

In general case, the geocoding service in eLiteGIS can be used not only on address data for

matching addresses and coordinates, but also on any other data as the universal service for the

free text search.

Before publishing the geocoding service, you need to make sure that the source data for this

service is properly configured:

• the layers and fields in the layers, which will be searched, are defined in the database

• for layers where several fields will be used in the search, the values of these fields have

been merged

• the index for the selected fields is built

• the map project is created from the selected layers

• in the layers properties in the map project, the display field is specified, which matches

the fields by which the search will be carried out.

To build the address geocoder, it is necessary that in the map project, based on which the

geocoding service will be created, the layers of buildings and streets are present.

This section provides detailed instructions on publishing geocoding service.

7.1. Preparing data in database

To create the geocoding service, you need to define the list of tables and fields in the PostgreSQL

database that will be used for geocoding.

Note: for work with tables and fields, the pgAdmin is used.

Let’s assume that for work of our service the layers of building and roads are created.

In the buildings layer the fields city, street and number will be used (see Figure 129). In the roads

layer the field name will be used (see Figure 130).

65

Figure 129 – Buildings layer: fields for geocoding

Figure 130 – Roads layer: fields for geocoding

For correct search by the geocoder using the freetext index, for layers in which more than one

field will be used, it is necessary to combine the values of these fields.

For example, for the buildings layer, you need to create a new search field and add the necessary

values there as follows:

ALTER TABLE public.buildings ADD COLUMN search_text character varying;

UPDATE public.buildings SET search_text = TRANSLATE(COALESCE ("city", '') || ' ' ||

COALESCE ("street", '') || ' ' || COALESCE ("number", ''), './+-', ' ');

66

Then create the trigger to update this field, if needed:

CREATE FUNCTION buildings.update_search_text() RETURNS trigger AS $$

 BEGIN

 NEW.search_text = translate(NEW.city || ' ' || NEW.street || ' ' || NEW.number, './+-

', ' ');

 RETURN NEW;

 END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER buildings_update_search_text BEFORE INSERT OR UPDATE ON

public.buildings

FOR EACH ROW EXECUTE PROCEDURE buildings.update_search_text();

And then specify the freetext index for the selected fields:

CREATE INDEX ON public.buildings

USING gin(to_tsvector('russian', COALESCE("search_text", '')));

CREATE INDEX ON public.roads

USING gin(to_tsvector('russian', COALESCE("name", '')));

After this it is recommended to make sure that the indices are created. To do so, check the

information about the table in the database, as shown on Figure 131.

Figure 131 – Buildings layer: indices for geocoding

7.2. Preparing the project in QGIS

For publishing of geocoding service in eLiteGIS it is needed to create map project with the

geocoder data.

To do so, add the buildings and roads layers created on the previous step, to the map project,

see Figure 132.

67

Figure 132 – Adding layers for geocoder to the QGIS map project

Next, for each layer, you need to specify the presence and correct order of fields. To do this,

from the context menu of the layer, you need to open the attribute table, as shown on Figure

133.

Figure 133 – Attribute table of the layer

Next, in the attribute table, from the context menu for the column headings, select Organize

Columns, see Figure 134.

Figure 134 – Setting the fields composition

And then in the appeared window Organize Table columns, you need to leave enabled the field

primary_key and those fields that will be used in the geocoding, see Figure 135. Press ОК.

68

Figure 135 – Selection of layer fields for use in the geocoding service

This way the order of the fields in the table will be set. These steps must be repeated for all

other layers.

Then you need to give each layer a field that will be used as Display Field. To do this, select the

Display item in the layer properties and set the corresponding field, see Figure 136 with the

example.

Figure 136 – Setting display field

If you need to set display by multiple fields, set Display expression. For example, for the buildings

layer, the expression may look as following: concat("postcode", ' ', "city",' ',"street",' ',"number"),

see Figure 137.

Figure 137 – Display by multiple fields

Note: only following functions are supported: "sin", "cos", "tan", "atan", "abs", "asin", "acos",

"log", "log10", "cailing", "floor", "round", "ltrim", "rtrim", "substr", "substring", "concat", "lower",

"upper", "pow", "andbits", "len", "length", "coalesce", "mod", "scale_linear", "scale_exp",

"tostring"

By default the freetext search is done by the field specified in Display Field.

If the expression is specified, the freetext search will not work. In this case, it is necessary to

specify the field, by which the search should be done, by a separate property in the layer

69

settings. To do this, in the layer properties in the Variables tab specify variable

eLiteGIS_geocode_search_fields with the search field name, see Figure 138.

Figure 138 – Setting search field

Now save the created QGS project, see Figure 139.

Figure 139 – Saving QGS project

Preparation of data and project for publishing geocoding service is completed.

7.3. Publishing the geocoding service in eLiteGIS

This section describes the steps of publishing geocoding service in eLiteGIS. More details about

work with services (including the geocoding service) are provided in Publishing GIS services in

eLiteGIS manual.

For publishing geocoding service created based on the map project (see above), open eLiteGIS

Manager and download QGS project, see Figure 140.

Figure 140 – Downloading QGS project in eLiteGIS

70

After the project download, the map service is automatically published. Check its working

capability as shown on Figure 141.

Figure 141 – Checking the geocoding service working capability

The order of fields in the service declaration should be the same as for the freetext index, see

Figure 142.

Figure 142 – Checking the fields order in the service declaration

After checking completion, the geocoding service can be published, see Figure 143.

71

Figure 143 – Adding the geocoding service (1)

In the appeared window specify the service name and press Add button, see Figure 144.

Figure 144 – Adding the geocoding service (2)

Then, in the Project tab of the service properties in the Map name field, select the map service

that was published on the previous step based on the QGIS project. Press Save, see Figure 145.

Figure 145 – Setting the geocoding service

Geocoding service is ready for work.

72

8. Attachments
eLiteGIS supports storing photos, documents and other files as attachments to features. Setting

up the storage of attachments is not done by means of QGIS, but via creation and setting of

specific tables in the database.

8.1. Storing attachments in the database

To store attachments in the database, separate tables are created for each feature class to

which you want to add attachments.

Table name by default: <mytable>_ATTACH.

The table can be created by means of QGIS (in the Database manager).

The table structure (field names and types) looks as following, see Figure 146.

Figure 146 – Structure of table for storage of attachments in the database

The script for table creation in PostgreSQL:

CREATE TABLE <my_schema>."<my_table>__ATTACH"

(

 "ATTACHMENTID" serial,

 "REL_OBJECTID" integer NOT NULL,

 "CONTENT_TYPE" character varying(255) NOT NULL,

 "ATT_NAME" character varying(255) NOT NULL,

 "DATA_SIZE" integer NOT NULL,

 "DATA" bytea,

 CONSTRAINT <my_schema>."<my_table>__ATTACH" PRIMARY KEY ("ATTACHMENTID")

)

TABLESPACE pg_default;

ALTER TABLE <my_schema>."<my_table>__ATTACH"

 OWNER to postgres;

8.2. Storing attachments as files on the disk

For storage of attachments on the disk, a separate table is created, in which it is specified where

the files will be saved and for which feature classes.

Table name by default: eLiteGIS_attachment_groups.

The table can be created by means of QGIS (in the Database manager).

The table structure (field names and types) looks as following, see Figure 147.

73

Figure 147 – Structure of table for storage of attachments as files on the disk

The table:

• group_name – the name of table record for orientation (can be not unique);

• target_table_name – the short of full name or template of the feature class name;

• folder_path – the path to the root folder where to the files should be saved;

• is_enabled – the property indicating whether the setting of this record should be used (0

- no, 1 - yes).

The script for table creation in PostgreSQL:

CREATE TABLE <my_schema>.eLiteGIS_attachment_groups

(

 objectid serial,

 group_name character varying,

 target_table_name character varying,

 folder_path character varying,

 is_enabled character varying,

 CONSTRAINT eLiteGIS_attachment_groups_pkey PRIMARY KEY (objectid)

)

TABLESPACE pg_default;

ALTER TABLE <my_schema>.eLiteGIS_attachment_groups

 OWNER to postgres;

74

9. Edits history
eLiteGIS allows you to enable recording of all edits of the features.

This setting is not done by means of QGIS, but via creation and setting of specific tables in the

database.

For work of the edits history setting, the corresponding SOE rule (see details in the Creating map

applications in CoGIS manual) and the specific table in the database are required.

Table name by default: eLiteGIS_edit_history

The table can be created by means of QGIS (in the Database manager).

The table structure (field names and types) looks as following, see Figure 148:

Figure 148 – Structure of fields in the table for storing the edits history

The script for table creation in PostgreSQL:

CREATE TABLE <my_schema>.eLiteGIS_edit_history

(

 id uuid NOT NULL,

 edited_user character varying(255),

 edited_date date NOT NULL,

 target_table_name character varying(255) NOT NULL,

 target_oid integer NOT NULL,

 action_type character varying(50) NOT NULL,

 attributes_data text NOT NULL,

 CONSTRAINT eLiteGIS_edit_history_pkey PRIMARY KEY (id)

)

TABLESPACE pg_default;

ALTER TABLE <my_schema>.eLiteGIS_edit_history

 OWNER to postgres;

75

10. Tiles auto update
The map service, in addition to vector graphics, can output the map areas as the raster image.

Such image is divided into blocks/squares called tiles.

After generation, the tiles are stored in the tile cache, and on subsequent requests, the tiles are

not re-generated, but taken from the cache. Thus, if map features have been changed, then

these changes will not be reflected on previously generated tiles.

To avoid such situations, the map service in eLiteGIS can be configured to update those tiles that

contain changed features. Besides the corresponding setting of service in eLiteGIS Manager (see

Publishing GIS services in eLiteGIS manual), it is required to create a specific table in the

database, where to the extents for tiles re-generation will be recorded.

Table name by default: eLiteGIS_changed_extent_log.

The table can be created by means of QGIS (in the Database manager).

The table structure (field names and types) looks as following:

Figure 149 – Structure of table for storage of extents for tiles re-generation

The script for table creation in PostgreSQL:

CREATE TABLE <my_schema>.eLiteGIS_changed_extent_log

(

 id serial,

 target_table_name text,

 service_name text,

 xmincoord double precision,

 xmaxcoord double precision,

 ymincoord double precision,

 ymaxcoord double precision,

 spatial_reference_id integer,

 processed integer,

 edited_date timestamp with time zone,

 CONSTRAINT eLiteGIS_changed_extent_log_pkey PRIMARY KEY (id)

)

TABLESPACE pg_default;

ALTER TABLE <my_schema>.eLiteGIS_changed_extent_log

 OWNER to postgres;

76

Also, to fill this table in the database, you should create the trigger for the change in the

corresponding feature class. If there are several feature classes, then the trigger is created for

each such class.

The trigger creation script is as following:

CREATE FUNCTION <my_schema>.set_data_to_extentchangelog() RETURNS trigger AS $$

 BEGIN

 IF (OLD.geom IS NOT NULL AND ST_IsEmpty(OLD.geom) = false) THEN

 BEGIN

 INSERT INTO <my_schema>.eLiteGIS_changed_extent_log (edited_date,

target_table_name, xmincoord, xmaxcoord, ymincoord, ymaxcoord,

spatial_reference_id)

 VALUES (CURRENT_TIMESTAMP,

 concat(TG_TABLE_SCHEMA, '.', TG_TABLE_NAME),

 ST_XMin(OLD.geom),

 ST_XMax(OLD.geom),

 ST_YMin(OLD.geom),

 ST_YMax(OLD.geom),

 ST_SRID(OLD.geom));

 END;

 END IF;

 IF (NEW.geom IS NOT NULL AND ST_IsEmpty(NEW.geom) = false) THEN

 BEGIN

 INSERT INTO <my_schema>.eLiteGIS_changed_extent_log (edited_date,

target_table_name, xmincoord, xmaxcoord, ymincoord, ymaxcoord,

spatial_reference_id)

 VALUES (CURRENT_TIMESTAMP,

 concat(TG_TABLE_SCHEMA, '.', TG_TABLE_NAME),

 ST_XMin(NEW.geom),

 ST_XMax(NEW.geom),

 ST_YMin(NEW.geom),

 ST_YMax(NEW.geom),

 ST_SRID(NEW.geom));

 END;

 END IF;

 RETURN NULL;

 END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER set_data_to_extent_change_log

AFTER INSERT OR UPDATE OR DELETE

ON '<my_schema>.<my_featureclass>

 FOR EACH ROW

77

EXECUTE PROCEDURE <my_schema>.eLiteGIS_changed_extent_log();

